Computing Termination Conditions of While Loops*

Wided Ghardallou, Faculty of Sciences, University of Tunis
El Manar, 1080 Tunisia, wided.ghardallou@gmail.com
Lamia Labed Jilani, Institut Superieur de Gestion,
Bardo, 2000 Tunisia, lamia.labeled@planet.tn
Fairouz Tchier, King Saud University
Riyadh, KSA ftchier@hotmail.com
Ali Jaoua, Qatar University
Doha, Qatar, jaoua@qu.edu.qa
Marcelo Frias, ITBA
Buenos Aires, Argentina mfrias@itba.edu.ar
Jules Desharnais, Laval University
Quebec City, PQ Canada jules.desharnais@ift.ulaval.ca
Ali Mili, New Jersey Institute of Technology
Newark NJ 07102-1982, USA mili@cis.njit.edu

October 8, 2013

Abstract

The study of the termination condition of a loop is an important part of the analysis of loops. In this paper, we use the concept of invariant relations to compute termination conditions of loops. Our definition of termination encompasses not only the condition that the number of iterations is finite, but also the condition that each iteration of the loop executes without raising an exception, such an array reference out of bounds, a division by zero, an overflow/underflow, an illegal pointer reference, etc.

Keywords

while loops, invariant assertions, invariant relations, termination conditions, abort-freedom, a logic for loop termination.

1 Introduction: Modeling Termination

In the broad picture of the analysis of software artifacts, loops mobilize the lion’s share of attention, because they are typically the focus of product complexity, and (consequently) the locus of most programming faults. In [52], we propose a theory for computing or approximating the function of a

*Acknowledgement: This publication was made possible by a grant from the Qatar National Research Fund NPRP04-1109-1-174. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the QNRF.
loop, using the concept of invariant relation, whose properties we analyze in [55]. In [26], we expand the application of invariant relations by showing that in addition to being useful for computing and approximating loop functions, they can also be used to compute several other relevant attributes of while loops, such as: weakest preconditions, strongest postconditions, invariant assertions, invariant functions, necessary conditions of correctness, sufficient conditions of correctness, etc.

In this paper, we explore the use of invariant relations to compute termination conditions of loops. We define termination in the broadest sense possible, to encompass not only the condition that the number of iterations is finite, but also the condition that each individual iteration completes its execution without causing an abort. In particular, we consider in turn the following conditions, each of which can be modeled by a different invariant relation.

- Array references out of bounds.
- Illegal operations, such as division by zero, logarithm of a non-positive number, square root of a negative number, etc.
- Arithmetic overflow (whenever the result of some operation on two representable values is not representable in the computer).
- Illegal pointer reference (whenever the program attempts to reference a nil pointer).

We refer to these conditions as abort conditions, and we refer to the property of avoiding these conditions as abort-freedom; other authors refer to these conditions as safety properties, but we adhere to the terminology introduced by Laprie et al. [2, 43–45], in which safety refers to correctness with respect to a safety-critical requirement; needless to say, safety (in the sense of Laprie et al.) is neither necessary nor sufficient for abort-freedom.

It is customary to study loop termination and abort-freedom as two separate properties; in this paper, we study them jointly, for the following reasons:

- Pragmatics: We are interested to characterize initial states for which execution of the program produces a well defined final state; whether a program fails to deliver a final state because it fails to terminate and is aborted by the operating system, or because it attempts an illegal operation and is aborted by the operating system, makes no difference. In both cases, the program is interrupted without producing a well defined final state.

- Semantics. We model programs by denotational semantics, where programs are represented by functions and termination conditions are represented by the domains of program functions. Termination conditions and abort-freedom conditions are both part of the definition of domain functions, and as such are indistinguishable. Whether a program fails to terminate because it executes an infinite loop or because it causes another form of abort (division by zero, array reference out of bound, etc) is a syntactic distinction, not a semantic distinction; semantically, in both cases we have no final state s' for the initial state s, hence s is not in $\text{dom}(G)$.

- Modeling. In this paper, we present a theorem to the effect that any invariant relation of the loop can be used to produce a superset of the domain of the loop’s function. This theorem characterizes the domain of the loop’s function, and makes no mention of whether the domain is determined by limiting the number of iterations or by avoiding aborts during the execution. We may use this theorem to capture either aspect of termination, depending
on what invariant relation we apply it with; any given invariant relation may capture a mix of termination conditions and abort freedom conditions, and invariant relations do not lend themselves to easy classification.

- **Methodology.** We consider the following function that computes the quotient of integer x by integer y:

  ```
  function divide (int x, int y)
  { int z=0; while (x>y) {x=x-y; z=z+1;} return(z);
  }
  
  and we consider the following function call:

  ```
 int a, b, c; read(a,b); c=divide(a,b);
  ```

  To analyze the condition of termination of this program, we can either use an abort-freedom analysis, and argue that \texttt{divide(a,b)} can only succeed if \( b \neq 0 \), or use a termination analysis, and argue that the loop terminates only if \( b \) (instance of \( y \)) is different from 0. We consider that these two arguments ought to be part of the same approach; their only difference being that they reason at different levels of abstraction.

In section 2 we briefly introduce elements of relational mathematics that we use throughout this paper, and in section 3 we introduce the concept of invariant relation, and discuss how this concept can be used to analyze loops, and what is its relation to the more widely used concept of invariant assertion [31]. In section 4 we discuss a general framework for analyzing the termination of programs, which we then specialize to iterative programs, by means of a necessary condition of termination. In section 5, we consider several conditions of abort avoidance and apply the necessary condition of termination to them, then we discuss in section 6 under what condition the computed sufficient necessary conditions can be deemed sufficient. Finally in section 7 we summarize our findings, compare them to related work, and sketch directions of future research.

## 2 Mathematical Background

We assume the reader familiar with relational mathematics; the purpose of this section is to introduce some definition and notations, inspired from [6].

### 2.1 Definitions and Notations

We consider a set \( S \) defined by the values of some program variables, say \( x \) and \( y \); we denote elements of \( S \) by \( s \), and we note that \( s \) has the form \( s = \langle x, y \rangle \). We denote the \( x \)-component and (resp.) \( y \)-component of \( s \) by \( x(s) \) and \( y(s) \). For elements \( s \) and \( s' \) of \( S \), we may use \( x \) to refer to \( x(s) \) and \( x' \) to refer to \( x(s') \). We refer to \( S \) as the space of the program and to \( s \in S \) as a state of the program. A relation on \( S \) is a subset of the cartesian product \( S \times S \). Constant relations on some set \( S \) include the universal relation, denoted by \( L \), the identity relation, denoted by \( I \), and the empty relation, denoted by \( \emptyset \).
2.2 Operations on Relations

Because relations are sets, we apply set theoretic operations to them: union (∪), intersection (∩), and complement (R). Operations on relations also include: The converse, denoted by R∗, and defined by R∗ = {(s,s')|(s',s) ∈ R}. The product of relations R and R' is the relation denoted by R ∘ R' (or RR') and defined by R ∘ R' = {(s,s')|∃s'' : (s,s'') ∈ R ∧ (s'',s') ∈ R'}. The nucleus of relation R is the relation denoted by μ(R) and defined by μ(R) = R ∗ R. The n-th power of relation R, for natural number n, is denoted by Rn and defined by R0 = I, and Rn = R ∘ Rn−1, for n ≥ 1. The transitive closure of relation R is the relation denoted by R+ and defined by R+ = {(s,s')|∃i > 0 : (s,s') ∈ Ri}. The reflexive transitive closure of relation R is the relation denoted by R* and defined by R* = I ∪ R+. We admit without proof that R*R* = R* and that Rn R+ = R+ Rn = R+ The pre-restriction (resp. post-restriction) of relation R to predicate t is the relation {(s,s')|t(s) ∧ (s,s') ∈ R} (resp. {(s,s')|(s,s') ∈ R ∧ t(s')}). Given a predicate t, we denote by T the relation defined as T = {(s,s')|t(s)}. The domain of relation R is defined as dom(R) = {s|∃s' : (s,s') ∈ R}, and the range of R (rng(R)) is the domain of R. We apply the usual conventions for operator precedence: unary operators are applied first, followed by product, then intersection, then union.

2.3 Properties of Relations.

We say that R is deterministic (or that it is a function) if and only if R ∗ R ⊆ I, and we say that R is total if and only if I ⊆ R ∗ R, or equivalently, RL = L. A vector V is a relation that satisfies VL = V; in set theoretic terms, a vector on set S has the form C × S, for some subset C of S; we use vectors as a relational representation of sets. We note that for a relation R, RL represents the vector {(s,s')|s ∈ dom(R)}; we use RL as the relational representation of the domain of R. A relation R is said to be reflexive if and only if I ⊆ R, transitive if and only if RR ⊆ R and symmetric if and only if R = R∗. We admit without proof that the transitive closure of a relation R is the smallest transitive superset of R and that the reflexive transitive closure of R is the smallest reflexive transitive superset of R. A relation that is reflexive, symmetric and transitive is called an equivalence relation. The nucleus of a deterministic relation f can be written as: μ(f) = {(s,s')|f(s) = f(s')} and is an equivalence relation. A relation R is said to be anti-reflexive if and only if R ∩ I = ∅, i.e. it has no pairs of the form (s,s). A relation R is said to be inductive if and only there exists a vector A such that R = A ∪ A; inductive relations can be written as R = {(s,s')|a(s) ⇒ a(s')} for some predicate a on S.

3 Invariant Relations

Informally, an invariant relation of a while loop of the form w = while (t) {b} is a relation that contains all (but not necessarily only) the pairs of program states that are separated by an arbitrary number of iterations of the loop. Invariant relations are introduced in [52, 54], their relation to invariant assertions is explored in detail in [55], and their applications are explored in [26]. Among their main attributes, we cite:

- They depend exclusively on the loop, and (unlike invariant assertions) do not depend on the context in which the loop is used.
• Whereas invariant assertions can only be used to prove the partial correctness of a loop, invariant relations can be used to prove the total correctness of a loop.

• Whereas invariant assertions can only be used to prove that a loop is correct, invariant relations can be used to prove that a loop is correct (if the invariant relation subsumes the candidate specification), but can also be used to prove that a loop is incorrect (if the invariant relation is incompatible with the candidate specification).

• Invariant relations enable us to model the termination of while loops in a broad sense, in such a way as to encompass not only the condition that the number of iterations is finite, but also the condition that every single iteration executes without causing an abort.

• In [55] we find that invariant relations are a more general concept than invariant assertions, in the following sense: all invariant assertions stem from invariant relations, but only a small class of invariant relations stem from (can be derived from) invariant assertions.

Before we introduce a formal definition of invariant relations, we present some definitions and notations pertaining to loop semantics.

3.1 Program Semantics

Given a program \( g \) on space \( S \), we let the function of \( g \) be denoted by \( G \) and defined as the set of pairs \( (s, s') \) such that if \( g \) starts execution on state \( s \) then it terminates normally in state \( s' \). By terminates normally, we mean that the program terminates after a finite number of operations, without causing an abort (resulting from an illegal operation), and returns a well-defined final state. From this definition it stems that \( \text{dom}(G) \) is the set of states \( s \) such that if execution of \( g \) starts in state \( s \) then it terminates (normally). The termination condition of program \( g \) is the predicate \( s \in \text{dom}(G) \); note that we talk about the termination condition of any program, not exclusively of iterative programs. As a convention, we represent programs by lower case letters and their function by the same letter in upper case.

We consider while loops written in some C-like programming language, and we quote the following theorem, due to [52], which we use as the semantic definition of a while loop.

**Theorem 1** We consider a while statement of the form \( w = \text{while } t \{ b \} \). Then its function \( W \) is given by:

\[
W = (T \cap B)^* \cap \hat{T},
\]

where \( B \) is the function of \( b \), and \( T \) is the vector defined by: \( \{(s, s') | t(s)\} \).

The main difficulty of analyzing while loops is that we cannot, in general, compute the reflexive transitive closure of \( (T \cap B) \) for arbitrary values of \( T \) and \( B \).

3.2 Definitions

If we knew how to compute reflexive transitive closures of arbitrary functions and relations, then we would apply theorem 1 to derive the function of the loop, and do away with invariant relations, invariant assertions, and all the other loop artifacts [26]; but in general we do not. The interest of invariant relations is two-fold:
• First, they enable us to compute the function of a loop in a stepwise manner, by successive approximations; this is explored in [52].

• Second, perhaps more interestingly, they enable us to answer many questions about the loop without having to compute its function; this is explored in [26]. In particular, they enable us to compute termination conditions of while loops, which we explore in this paper.

We define invariant relations formally as follows.

**Definition 1** Given a while loop of the form \( w = \text{while } t \{ b \} \) on space \( S \), we say that relation \( R \) is an invariant relation for \( w \) if and only if it is a reflexive and transitive superset of \( (T \cap B) \).

The interest of invariant relations is that they are approximations of \( (T \cap B)^* \), the reflexive transitive closure of \( (T \cap B) \); smaller invariant relations are better, because they represent tighter approximations of the reflexive transitive closure; the smallest invariant relation is \( (T \cap B)^* \). The following proposition stems readily from the definition.

**Proposition 1** Given a while loop of the form \( w = \text{while } t \{ b \} \) on space \( S \), we have the following results:

1. The relation \( (T \cap B)^* \) is an invariant relation for \( w \).
2. If \( R \) is an invariant relation for \( w \), then \( (T \cap B)^* \subseteq R \).
3. If \( R_0 \) and \( R_1 \) are invariant relations for \( w \) then so is \( R_0 \cap R_1 \).

To illustrate the concept of invariant relation, we consider the following while loop on integer variables \( n, f, \) and \( k \):

\[
w: \text{while } (k != n) \{ k = k + 1; f = f * k; \}.
\]

We consider the following relation:

\[
R = \left\{ (s, s') \mid \frac{f}{k!} = \frac{f'}{k'!} \right\}.
\]

This relation is reflexive and transitive, since it is the nucleus of a function; to prove that it is a superset of \( (T \cap B) \) we compute the intersection \( R \cap (T \cap B) \) and easily find that it equals \( (T \cap B) \). Other invariant relations include \( R' = \{(s, s') \mid n' = n \} \), and \( R'' = \{(s, s') \mid k \leq k' \} \).

### 3.3 Invariant Relations and Invariant Assertions

In [55], we have analyzed the relationships between invariant assertions [31], invariant functions [53], and invariant relations [52, 54]. In this section, we briefly present and illustrate the results of [55] as they pertain to the relationship between invariant assertions and invariant relations. First, we present a relational definition of invariant assertions [31], by representing assertions in relational form as vectors.

**Definition 2** A vector \( A \) is said to be an invariant assertion for the while loop \( w = \text{while } t \{ b \} \) with respect to precondition \( \phi \) and postcondition \( \psi \) if and only if it satisfies the following conditions:
Before we compare invariant assertions and invariant relations, it is important to remember that invariant relations are intrinsic to the loop whereas invariant assertions depend not only on the loop but also on its context, as defined by its precondition and postcondition. With this clarification in mind, we can summarize the relationship between invariant relations and invariant assertions by the following propositions, which are due to [55]:

- If $R$ is an invariant relation for the while loop $w$ and $\phi$ is an arbitrary vector on $S$ (that represents a precondition of the loop), then the vector $A = \hat{R}\phi$ is an invariant assertion for $w$ with respect to precondition $\phi$ and postcondition $\hat{R}\phi \cap \mathcal{T}$. This clause shows how we can map an invariant relation and precondition into an invariant assertion.

- If $A$ is an invariant assertion for the while loop $w$ then the relation $R = \overline{A} \cup \hat{A}$ is an invariant relation for $w$. This clause shows how we can map an invariant assertion into an invariant relation.

- Given an invariant assertion $A$ for the while loop $w$, there exists a vector $\phi$ (precondition) and an invariant relation $R$ such that $A = \hat{R}\phi$. In other words, all invariant assertions stem from invariant relations, and all invariant assertions are the product of the inverse of an invariant relation (a factor that is intrinsic to the loop) with a vector (that represents the precondition of the loop, and reflects the context in which the loop is used). This structure can be used to streamline the generation of invariant assertions [8, 19, 21, 24, 25, 32–34, 38–41, 47, 60, 63, 69].

- Given an invariant relation $R$ for the while loop $w$, if $R$ is an inductive relation then there exists an invariant assertion $A$ such that $R = \overline{A} \cup \hat{A}$. In other words, all inductive invariant relations stem from invariant assertions.

Because all invariant assertions stem from invariant relations, but only inductive invariant relations (a small class of invariant relations) stem from invariant assertions, we argue that invariant relations are a more general concept than invariant assertions.

As an illustration of this discussion, we consider the sample factorial program presented above (in section 3.2), and we consider the invariant relation

$$R = \left\{ (s, s') | \frac{f}{k!} = \frac{f'}{k'}! \right\}.$$  

If we take the precondition represented by the vector

$$\phi = \{(s, s') | f = 1 \land k = 0 \}$$

then we can compute the corresponding invariant assertion and postcondition constructively, as follows:

$$A = \hat{R}\phi = \{(s, s') | \frac{f}{k!} = \frac{1}{0!} \} = \{(s, s') | f = k! \},$$

$$\psi = \hat{R}\phi \cap \mathcal{T} = A \cap \mathcal{T} = \{(s, s') | f = k! \land k = n \} = \{(s, s') | f = n! \land k = n \}.$$  

The interested reader may choose another (arbitrary) precondition $\phi$ and be assured that by applying the proposed formulae, she/he will find the corresponding invariant assertion and postcondition.
3.4 Generating Invariant Relations

In order to put our research into practice, we have developed a prototype tool that generates invariant relations of loops written in C-like languages (C, C++, Java). The design and operation of this tool is beyond the scope of this paper, and is discussed in other sources [26, 35, 36, 52, 55]; in this paper, we briefly present some details of this tool, for the purpose of making this paper self-contained.

Proposition 2 Let \( w: \text{while } (t) \{ b \} \) be a while loop on space \( S \). The relation \( R = I \cup T(T \cap B) \) is an invariant relation for \( w \).

This relation can be computed constructively from \( T \) and \( B \), and includes pairs \((s, s')\) such that \( s' = s \) (case when no iterations are executed) and pairs \((s, s')\) such that \( s \) verifies \( t \) and \( s' \) is in the range of \((T \cap B)\) (case when one or more iterations are executed). We refer to it as the elementary invariant relation of \( w \), and in practice we generate it systematically whenever we analyze a loop. To generate other relations, we proceed by pattern matching: We map the source code of loops (in C, C++, or Java) onto relational notation, then we match clauses of their relational representation against code patterns for which we know invariant relation patterns. Whenever a match is successful, we generate an invariant relation by instantiating the matching invariant relation pattern with the variable substitutions of the match.

The aggregate made up of a code pattern and the corresponding invariant relation pattern is called a recognizer. We distinguish between 1-recognizers, whose code pattern includes a single statement, 2-recognizers, whose code pattern includes two statements, and 3-recognizers, whose code pattern includes three statements; to keep combinatorics under control, we seldom use recognizers of more than 3 statements. The machinery that maps source code into internal relational notation is in place, as is the machinery that maintains the database of recognizers and matches the relational representation of a loop against recognizers to generate invariant relations. What determines the capability of our tool is the set of recognizers that are stored in its database. In the remainder of this paper, whenever we talk about an invariant relation that would fulfill some role (e.g. identify exceptional conditions that preclude normal termination), it is understood that we can deploy this invariant relation in practice by including its recognizer in the database of our tool.

4 A Logic for Loop Termination

The purpose of this section is to lay a foundation for the analysis of loop termination by means of two theorems: the first gives a general necessary condition of termination; and the second theorem gives guidance on how to use the first theorem to target specific abort freedom properties.

4.1 A Necessary Condition of Termination

We consider a while loop \( w \) of the form \( w: \text{while } (t) \{ b \} \) on space \( S \), and we are interested to compute its domain, which we represent by the vector \( WL \) (where \( W \) is the function of \( w \) and \( L \) is the universal relation). The following Theorem, due to [26], gives a necessary condition of termination.
Theorem 2 We consider a while loop \( w \) of the form \( w: \text{while} (t) \{ b \} \) on space \( S \), and we let \( R \) be an invariant relation for \( w \). Then

\[
WL \subseteq RT.
\]

This Theorem converts an invariant relation of \( w \) into a necessary condition of termination; we seek to derive the smallest possible invariant relations, in order to approximate or achieve the necessary and sufficient condition of termination. The proof of this Theorem is given in [26]; it stems readily from Theorem 1, and from relational identities. In practice, we compute the termination condition of a loop by means of the following steps:

- Using the invariant relation generator, we generate all the invariant relations we can muster; whenever a code pattern of the loop matches a recognizer pattern from our recognizer database, we generate the corresponding invariant relation. These relations are represented in Mathematica syntax (© Wolfram Research).
- We compute the intersection of the invariant relations we are able to generate, by merely taking the conjunct of their Mathematica representation.
- Given \( R \) the aggregate invariant relation computed above, we simplify the following logical formula, which is the logical representation of the formula of Proposition 2.

\[
\exists s': (s, s') \in R \land \neg t(s').
\]

The result is a logical expression in \( s \), which represent a necessary condition of termination of the loop.

As an illustration of this Theorem, we consider the sample factorial loop discussed earlier, namely:

\[
w: \text{while} (k \neq n) \{ k = k+1; f = f \times k; \}.
\]

We consider the following invariant relation of \( w \): \( R = \{(s, s')| k \leq k'\} \). Application of Theorem 2 to this invariant relation yields the following necessary condition: \( k \leq n \). Indeed, this condition is necessary to ensure that the number of iterations of the loop is finite.

As a less trivial example, consider the following loop on integer variables \( i, j, \) and \( k \).

\[
\text{while} (i > 1) \{ j = j+1; i = i+2 \times j-1; k = k-1; \}
\]

The parameters of this loop are:

- \( T = \{(s, s')| i > 1\} \).
- \( B = \{(s, s')| j' = j + 1 \land i' = i + 2 \times j + 1 \land k' = k - 1\} \).

We derive the following invariant relations (using recognizers from our existing database [36]):

- The elementary invariant relation, \( R_0 = I \cup T(T \cap B) \).
- Symmetric invariant relations: \( R_1 = \{(s, s')| j + k = j' + k'\} \), \( R_2 = \{(s, s')| i - j^2 = i' - j'^2\} \).
- Antisymmetric invariant relations (one of them suffices, given that we already have \( R_1 \), but we write them both): \( R_3 = \{(s, s')| j' \geq j\} \), \( R_4 = \{(s, s')| k' \leq k\} \).
Taking their intersection \( R = R_0 \cap R_1 \cap R_2 \cap R_3 \cap R_4 \), and applying Theorem 2 to \( R \), we find the following termination condition:

\[
(i \leq 1) \lor (i > 1 \land j \leq -\sqrt{i-1}).
\]

This condition is provably a necessary condition of termination; we believe that it is also a sufficient condition of termination, because the invariant relations we have used to generate capture all the relevant information for termination: relation \( R_0 \) captures relevant boundary conditions; relation \( R_3 \) captures the progression of the program state; relation \( R_2 \) links variable \( j \) which counts the number of iterations and variable \( i \), which is used in the loop condition. Note that relations \( R_1 \) and \( R_4 \) were redundant for our purposes, and are not needed to compute the termination condition, if we have \( R_0, R_2 \) and \( R_3 \).

It is difficult to justify the sufficiency of the termination condition given above, because the loop is not that simple; however one may try to take a data sample that satisfies the condition, e.g. \( i = 10 \land j = -5 \) and a data sample that does not satisfy the condition, e.g. \( i = 10 \land j = 0 \), and verify that the first sample yields to termination and the second yields to an infinite loop.

### 4.2 Abort Freedom

Theorem 2 converts any invariant relation into an approximation of (more precisely: a superset of) the domain of the while loop; in logical terms, this produces a necessary condition of termination. The domain of \( W \) is limited by failure of the loop to terminate, as well as failure of abort-prone statements to execute successfully; Theorem 2 applies equally well to either of these circumstances. Depending on our choice of invariant relations, we can capture one aspect of non-termination or the other, or a combination thereof. In this subsection, we present a general format of invariant relations that enable us to capture arbitrary aspects of abort-freedom (freedom from: array reference out of bounds, nil pointer reference, division by zero, arithmetic overflow, etc).

The following discussion builds an intuitive argument for the proposed theorem, and explains how we derived it. As a general rule, a program terminates whenever it is applied to a state within its domain, and fails to terminate otherwise. Hence, at a macro-level, the condition of termination of program \( g \) can merely be written as:

\[
s \in \text{dom}(G).
\]

If \( g \) is a sequence of two subprograms, say \( g = g_1; g_2 \) then this condition can be rewritten as:

\[
s \in \text{dom}(G_1) \land G_1(s) \in \text{dom}(G_2).
\]

We can prove by induction that if \( g \) is written as a sequence of arbitrary length, say \( g = (g_1; g_2; g_3; \ldots; g_n) \), then the condition of termination can be written as:

\[
s \in \text{dom}(G_1) \land G_1(s) \in \text{dom}(G_2) \land G_2(G_1(s)) \in \text{dom}(G_3) \land \ldots \land
\]

\[
G_{n-1}(G_{n-2}(...(G_3(G_2(G_1(s))))))) \in \text{dom}(G_n),
\]

or, equivalently, as:

\[
(1) \quad \forall h : 0 \leq h < n : G_h(G_{h-1}(...(G_3(G_2(G_1(s))))))) \in \text{dom}(G_{h+1}).
\]
If we specialize this equation to while loops, where all the \( G_i \)'s are instances of the loop body, we find the following equation:

\[
(2) \quad \forall h : 0 \leq h < n : (T \cap B)^h(s) \in \text{dom}(B).
\]

In practice it is difficult to compute \((T \cap B)^h\) for arbitrary values of \( h \); fortunately, it is not necessary to compute them either, as usually only a small set of program variables is involved in characterizing abort freedom. Hence, we substitute in the above equation the term \((T \cap B)^h\) by a superset thereof (which we call \( B' \)), that captures only the transformation of abort-relevant variables. This equation can then be written as:

\[
(3) \quad \forall h : 0 \leq h < n : B'^h(s) \in \text{dom}(B).
\]

We want to change this formula from a quantification on the number of iterations to a quantification on intermediate states; to this effect, we use the change of variables:

\[
\begin{align*}
\forall u : (s, u) &\in B'^* \land (u, s') \in B'^+ \Rightarrow u \in \text{dom}(B). \\
\text{(4)}
\end{align*}
\]

Interestingly, this equation defines an invariant relation between \( s \) and \( s' \); this is the object of Theorem 3. Before we present this theorem and its proof, we write the proposed invariant relation in algebraic form.

\[
R = \{ \text{denotation} \} \\
\{ (s, s') | \forall u : (s, u) \in B'^* \land (u, s') \in B'^+ \Rightarrow u \in \text{dom}(B) \} \\
= \{ \text{rewriting } u \in \text{dom}(B) \} \\
\{ (s, s') | \forall u : (s, u) \in B'^* \land (u, s') \in B'^+ \Rightarrow (u, s') \in B'L \} \\
= \{ \text{De Morgan} \} \\
\{ (s, s') | \exists u : (s, u) \in B'^* \land (u, s') \in B'^+ \land (u, s') \notin B'L \} \\
= \{ \text{Associativity} \} \\
\{ (s, s') | \exists u : (s, u) \in B'^* \land (u, s') \in (B'^+ \cap B'L) \} \\
= \{ \text{Relational Product} \} \\
B'^*(B'^+ \cap B'L).
\]

This discussion introduces, though it does not prove, the following theorem; its proof is given below.

**Theorem 3** We consider a while loop \( w \) of the form \( w = \text{while} \ t \ \{ b \} \) on space \( S \), and we let \( B' \) be a superset of \( T \cap B \). If \( B' \) satisfies the following conditions:

- \( B'^+ \) is anti-reflexive.
- The following relation \( Q = B'^*(B'^+ \cap V) \) is transitive, for an arbitrary vector \( V \).
- \( T \cap B \cap B'^+ B' = \emptyset \).

then \( R = (B'^*(B'^+ \cap B'L)) \) is an invariant relation for \( w \).
Proof. We have to show three properties of $R$, namely reflexivity, transitivity, and invariance (i.e. that $R$ is a superset of $(T \cap B)$).

**Reflexivity.** In order to show that $I$ is a subset of $R$, we show that $I \cap \overline{R} = \emptyset$. We find:

\[
I \cap \overline{R} \\
= \{\text{substitution}\} \\
I \cap (B^* (B^+ \cap \overline{BL})) \\
\subseteq \{\text{monotonicity}\} \\
I \cap B^* B^+ \\
= \{\text{relational identity}\} \\
I \cap B^+ \\
= \{\text{anti-reflexivity of } B^+\} \\
\emptyset.
\]

**Transitivity.** Transitivity is a trivial consequence of the second condition of the theorem, by taking $V = BL$.

**Invariance.** In order to prove that $(T \cap B) \subseteq R$, it suffices (by set theory) to prove that $(T \cap B) \cap \overline{R} = \emptyset$. To this effect, we analyze the expression $(T \cap B) \cap \overline{R}$. But first, we introduce a lemma to the effect that for any relation $C$, $C^+ C = C^+ C^+$. Indeed, $C^+ C^+$ can be written $CC^* C$ by decomposing $C^+$ as $CC^*$ then as $C^* C$. Now, $C^* C^*$ is equal to $C^*$: $C^* C^* \subseteq C^*$ because of transitivity, and $C^* \subseteq C^* C^*$ because $I \subseteq C^*$. Hence $C^+ C^+ = CC^* C = C^+ C$. Now, we consider the expression $(T \cap B) \cap \overline{R}$.

\[
(T \cap B) \cap \overline{R} \\
= \{\text{substitution, double complement}\} \\
(T \cap B) \cap (I \cup B^+) (B^+ \cap \overline{BL}) \\
= \{\text{decomposing the reflexive transitive closure}\} \\
(T \cap B) \cap B^+ \cap \overline{BL} \cup (T \cap B) \cap B^+ (B^+ \cap \overline{BL}) \\
= \{\text{associativity, and relational identity: } B \cap \overline{BL} = \emptyset\} \\
(T \cap B) \cap B^+ (B^+ \cap \overline{BL}) \\
\subseteq \{\text{monotonicity}\} \\
(T \cap B) \cap B^+ B^+ \\
= \{\text{lemma above}\} \\
(T \cap B) \cap B^* B' \\
= \{\text{hypothesis}\} \\
\emptyset.
\]

qed

The first condition of this theorem ensures that $B'$ captures variant properties of $(T \cap B)$, hence does not revisit the same state after a number of iterations; we refer to this as the antireflexivity condition. The second condition ensures that the resulting relation is transitive (a necessary condition to be an invariant relation); this condition involves $B'$ and the structure of $R$, but does not involve $B$; we refer to this as the transitivity condition. The third condition ensures that $B'$, while approximating $(T \cap B)$, remains in unison with it, i.e. does not iterate faster than $(T \cap B)$; this condition is needed to ensure that $R$ is a superset of $(T \cap B)$; we refer to it as the concordance.
condition. Note that there is a one-to-one correspondence between the properties of $B'$ and the resulting properties of $R$: The anti-reflexivity of $B'^+$ yields the reflexivity of $R$; the transitivity of $(B'^+(B'^+ \cap V))$ yields the transivity of $R$ and the concordance of $B'$ yields the invariance of $R$ (i.e. the property that $(T \cap B)$ is a subset of $R$).

The interest of this Theorem is that it appears to capture (in the form of an invariant relation) the property of abort-freedom of a while loop. To understand how it does that, consider the logical form of such invariant relations:

$$R = \{(s,s')|\forall u : (s,u) \in B'^* \land (u,s') \in B'^+ \Rightarrow u \in \text{dom}(B)\},$$

where $B'$ is a superset of $B$. In practice, we use $B'$ to approximate $B$, by focusing on the variables that are of interest to us (that are involved in abort-prone statements) and recording how $B$ transforms them. As for $\text{dom}(B)$, we use it to record the abort condition of interest: for example, if we want to model the condition that arithmetic operations in the loop body do not cause overflow, then we let $\text{dom}(B)$ include a clause to the effect that all operations produce a result within the range of representable values; if we want to model the condition that no division by zero arises in the execution of the loop body, then we include a condition in $\text{dom}(B)$ that ensures that all divisors in $B$ are non-zero; etc. So that relation $R$, as written above, provides that all intermediate states generated by successive iterations of $B$ cause no abort conditions. When we apply Theorem 2 using invariant relations generated by Theorem 3 (for various choices of $B'$ and various possible characterizations of $\text{dom}(B)$), we find conditions on the initial states of the loop, that ensure a terminating abort-free execution.

As we have discussed in section 3, smaller invariant relations are better. If we consider the template of invariant relations generated by Theorem 3,

$$R = \overline{B'^*(B'^+ \cap BL)},$$

we find that $R$ grows smaller (better) when $B'$ grows larger (i.e. provides a looser approximation of $B$) and when $BL$ (i.e. the domain of $B$) grows smaller (i.e. we capture more and more abort conditions).

5 Computing Termination Conditions

In the previous section we presented two theorems: Theorem 2 converts any invariant relation into a necessary condition of termination of a while loop; and Theorem 3 proposes a general form for invariant relations that capture abort freedom properties. In this section we combine these two theorems to capture termination conditions that arise from different abort-prone statements. Note that nothing in Theorem 2 indicates whether the necessary condition of termination produced therein is putting a bound on the number of iterations or ensuring the absence of aborts; hence this theorem can be used with any invariant relation to enhance our estimate of the necessary and sufficient condition of termination. What Theorem 3 does is to give some indication on how to derive invariant relations that capture abort-freedom; in practice, we use a mix of invariant relations to obtain a necessary and sufficient condition of termination, or an approximation thereof.

5.1 Array Reference Out of Bounds

The first corollary of Theorem 3 is so trivial as to make the theorem look like an overkill; but it also helps the reader better understand the theorem. We consider a while loop $w$ on space $S$ and we
assume that space \( S \) includes an array \( a \) of index range \([\text{low}...\text{high}]\). We assume that space \( S \) also includes an index variable, say \( k \), which is used to address the array. Then one issue of concern is to ensure that the array is not referenced outside of its bounds; the following proposition provides the appropriate invariant relation for this purpose.

**Proposition 3** Let \( w \) be a while loop of the form \( \text{while } (t) \{ b \} \) on space \( S \), where \( S \) includes an array \( a \) of index range \([\text{low}...\text{high}]\), and an index \( k \) that is incremented at each iteration. Then the following relation is an invariant relation for \( w \):

\[
R = \{(s,s') | \forall h : k \leq h < k' \Rightarrow \text{low} \leq h \leq \text{high} \}.
\]

**Proof.** This proposition is a special case of Theorem 3, in which we take \( B' \) as \( \{(s,s') | k' = k+1 \} \) and we let the domain of \( B \) be defined as: \( \text{dom}(B) = \{s | \text{low} \leq k \leq \text{high} \} \). We find that the transitive closure of \( B' \) is \( B'^+ = \{(s,s') | k < k' \} \), and that the reflexive transitive closure of \( B' \) is \( B'^* = \{(s,s') | k \leq k' \} \). We must check the three conditions of Theorem 3: \( B'^+ \) is indeed anti-reflexive, since its intersection with identity is empty. To verify the transitivity condition, we consider a relation of the form \( Q = B'^*(B'^+ \cap V) \) for some vector \( V \), and we write it in logical form:

\[
Q = \{(s,s') | \forall h : k \leq h < k' \Rightarrow p(h) \},
\]

for some predicate \( p \). From this representation, it is plain that \( Q \) is transitive: if predicate \( p \) holds for any \( h \) between \( k \) (inclusive) and \( k' \) (exclusive) and for any \( h \) between \( k' \) (inclusive) and \( k'' \) (exclusive) then it holds for any \( h \) between \( k \) (inclusive) and \( k'' \) exclusive. Finally, to verify the cordance condition, we compute \( T \cap B \cap B'^+ B' \) and show it to be the empty relation:

\[
\begin{align*}
T \cap B \cap B'^+ B' & \subseteq \{ \text{by hypothesis} \} \\
B' \cap B'^+ B' & = \{ \text{substitutions} \} \\
& = \{(s,s') | k' = k+1 \} \cap \{(s,s') | k < k' \} \circ \{(s,s') | k' = k+1 \} \\
& = \{ \text{performing the relational product} \} \\
& = \{(s,s') | k' = k+1 \} \cap \{(s,s') | k+1 < k' \} \\
& = \{ \text{contradiction} \} \\
& = \emptyset.
\end{align*}
\]

**qed**

We illustrate this proposition on a simple example:

\[
\text{while } (i! = 0) \{ i=i-1; x=x+a[k]; k=k+1; \}.
\]

Then, we write \( T \) and \( B \) as follows:

\[
\begin{align*}
T & = \{(s,s') | i \neq 0 \} \\
B & = \{(s,s') | \text{low} \leq k \leq \text{high} \land i' = i-1 \land x' = x + a[k] \land k' = k + 1 \land a' = a \}.
\end{align*}
\]

This program meets the condition of Proposition 3, with \( B' = \{(s,s') | k' = k+1 \} \). Application of this Proposition yields the following invariant relation:

\[
R = \{(s,s') | \forall h : k \leq h < k' \Rightarrow \text{low} \leq h \leq \text{high} \}.
\]
In addition to this invariant relation, we also generate the elementary invariant relation \( R' \) provided by Proposition 2, and the following invariant relation, which links \( i \) (the loop counter) and \( k \) (the array index):

\[
R'' = \{(s, s') | i + k = i' + k'\}.
\]

Applying Proposition 2 to the intersection of these three relations yields the following necessary condition of termination:

\[
(i = 0) \lor (i \geq 1 \land low \leq k \leq high - i + 1).
\]

The reader may verify that this is indeed a necessary condition of abort-free termination; we believe it is sufficient as well (i.e. our combined invariant relation is small enough as to produce the necessary and sufficient condition of termination).

As another array example, we consider the following program on real variables \( x \) and \( y \), array variable \( a \) and \( b \) (of type real), index (integer) variables \( i \) and \( j \), and constant \( N \).

\[
\text{while } (i < N) \{ x = x + a[i]; \ y = y + b[j]; \ j = j + i; \ i = i + 1; \ j = j - i; \}.
\]

By combining the invariant relation provided by Proposition 3 with invariant relations we maintain about array manipulation, we find the following condition of termination, which we believe to be sufficient:

\[
(i \geq N) \lor (i < N \land low \leq i \leq high \land low \leq j \leq high \land low \leq N \leq high \land low \leq (i + j - N) \leq high).
\]

In this proposition we have assumed, for the sake of simplicity, that the loop has an index variable \( i \) that is incremented at each iteration; but this is not necessary, as Theorem 3 gives us much broader latitude in choosing relation \( B' \). Any relation that satisfies the conditions of anti-reflexivity, transitivity, and concordance is an adequate choice for our purposes; this includes not only a relation that increments (or decrements) an integer variable by a non-zero constant amount, but any relation that beats the tempo of the iteration (by depleting a data structure, popping a stack, progressing through a sequence of pointers, navigating a graph, etc).

5.2 Illegal Arithmetic Operation

Let \( w \) be a while loop on space \( S \) of the form \( w: \text{while } (t) \{ b \} \), and let \( f \) be an arithmetic function that is evaluated in the loop body \( b \); if function \( f \) involves evaluating a square root, then the expression given in the argument must be non-negative; if it involves evaluating a fraction, then the expression given in the denominator must be non-zero; if it involves evaluating a logarithm, then the expression given in the argument must be positive; etc. We assume that execution of function \( f(s) \) in state \( s \) is prone to cause an abort, and we are interested to characterize the initial states on which the loop \( w \) may execute without causing \( f \) to abort. The following proposition is a corollary of Theorem 3.

**Proposition 4** Let \( w \) be a while loop on space \( S \) of the form \( w: \text{while } (t) \{ b \} \), and let \( f \) be an arithmetic function that is evaluated in \( b \), and let \( B' \) be a superset of \( B \) that satisfies the conditions of anti-reflexivity, transitivity, and concordance. Then the following relation is an invariant relation for \( w \\

\[
R = \{(s, s') | \forall s'' : (s, s'') \in B'^+ \land (s'', s') \in B'^+ \Rightarrow s'' \in \text{def}(f)\}.
\]

where \( \text{def}(f) \) is the set of states for which function \( f(s) \) is defined (can be evaluated).
Proof. This proposition is a corollary of Theorem 3, in which we let \( \text{dom}(B) \) be defined as \( \text{def}(f) \). \( \text{qed} \)

As an illustration of this Proposition, we consider the following loop on integer variables \( i, x, \) and \( y, \)

\[
\text{while } (i!=0) \{ i=i-1; \ x=x+1; \ y=y-y/x; \}
\]

and we propose to apply Proposition 4 using the following relation as a superset of \( B \):

\[
B' = \{(s,s') | x' = x + 1 \}.
\]

As a result of this choice, we find:

\[
B'^+ = \{(s,s') | x < x' \}, \ B'^* = \{(s,s') | x \leq x' \}.
\]

We write the parameters of this loop (\( T \) and \( B \)) as follows:

\[
T = \{(s,s') | i \neq 0 \}
\]

\[
B = \{(s,s') | x + 1 \neq 0 \land i' = i - 1 \land x' = x + 1 \land y' = y - \frac{y}{x+1} \}.
\]

From this definition of \( B \), we infer that \( \text{dom}(B) \) is defined as follows:

\[
\text{dom}(B) = \{(s,s') | x + 1 \neq 0 \}.
\]

By Proposition 4, we find the following invariant relation:

\[
R = \{(s,s') | \forall s'' : x(s) \leq x(s'') < x(s') \Rightarrow x(s'') + 1 \neq 0 \},
\]

which we can rewrite more simply (by the change of variable \( x(s'') = h \)) as:

\[
R = \{(s,s') | \forall h : x \leq h < x' \Rightarrow h + 1 \neq 0 \}.
\]

This invariant relation alone is insufficient to derive a meaningful termination condition, since the loop terminates by testing variable \( i \) whereas this invariant relation refers to variable \( x \); at a minimum, we need an additional invariant relation that links \( i \) and \( x \), and an invariant relation that records the variation of \( i \) (or, equivalently, the variation of \( x \)). Finally, we also generate the elementary invariant relation, which captures asymptotic behavior of the loop. This yields the following additional relations.

- The elementary invariant relation: \( R_1 = I \cup T(T \cap B) \),
- The relation that will ensure that the number of iterations is finite: \( R_2 = \{(s,s') | i \geq i' \} \),
- The relation that links the loop counter, on which termination depends, to \( x \), on which the condition of abort-avoidance applies: \( R_3 = \{(s,s') | x + i = x' + i' \} \).

We take the intersection of these four relations, and apply Theorem 2; this yields the following necessary condition of termination (which we have reason to believe is also sufficient),

\[
((i = 0) \lor (i \geq 1 \land (x < -i \lor x \geq 0))).
\]
Indeed, in order for this loop to terminate after a finite number of iterations without attempting a division by zero, either \((i = 0)\) (in which case the loop exits without iterating) or \((i > 0)\) in which case either \((x \geq 0)\) (in which case \(x + 1\) is initially greater than zero, and increases away from zero at each iteration) or \((x < -i)\), in which case \(x\) starts negative but the loop exits before \((x + 1)\) reaches 0.

As further illustration, we make a slight change to the program and observe how this affects the termination condition:

```c
while (i!=0) {i=i+2; x=x-5; y=y-y/x;}
```

We find:

\[(i = 0) \lor (i < 0 \land i \mod 2 = 0 \land (x < 5 \lor (5 < x < -\frac{5 \times i}{2} \land x \mod 5 \neq 0) \lor x > -\frac{5 \times i}{2})).\]

If we analyze this condition, we find that it stipulates that either \((i = 0)\) (in which case the loop does not iterate) or \((i < 0 \land i \mod 2 = 0)\) (in which case the number of iterations is finite) then either \(x < 5\) (in which case \(x\) never takes value 0 as it is decremented by 5 at each iteration) or \((5 < x < -\frac{5 \times i}{2} \land x \mod 5 \neq 0)\) (in which case \(x\) flies over zero on its way down but does not hit zero) or \((x > -\frac{5 \times i}{2})\) (in which case \(i\) reaches 0 and terminates the loop before \(x\) gets near zero). If \((i > 0)\) or if \((i < 0 \land i \mod 2 \neq 0)\) then this loop does not terminate since \(i\) never hits 0 as it is incremented by 2 at each iteration. It appears that in addition to being provably necessary, this condition is sufficient to ensure normal termination.

If we take the same example, but change the condition \((i!=0)\) into \((x!=0)\) and use the same invariant relations as above (as the change in the loop condition \(T\) has no impact on the choice of invariant relations), we find the following termination condition, which we believe to be sufficient in addition to being provably necessary:

\((x = 0)\).

Indeed, any value of \(x\) other than a positive multiple of 5 leads to an unbounded number of iterations; any value of \(x\) that is a positive multiple of 5 will iterate \(\frac{5}{2}\) times, but cause a division by zero on the last iteration. Hence the only case when this loop terminates is the case when \((x = 0)\), i.e. it does not iterate at all.

Using the same invariant relations, we were able to derive termination conditions of variations of this loop, including the following configurations of indices:

\begin{align*}
\{i' = i + 1 \land x' = x + 5\}, \{i' = i - 2 \land x' = x + 1\}, \{i' = i - 2 \land x' = x + 5\}, \{i' = i + a \land x' = x + b\}.
\end{align*}

### 5.3 Arithmetic Overflow

Because computer arithmetic is limited, one may apply an arithmetic operation to two representable arguments, and obtain a result that is not representable in the computer; this is another source of abort conditions. In this section, we consider the condition under which the execution of a loop proceeds without causing an arithmetic overflow; we assume that the abort is caused, not by applying the arithmetic operation (strictly speaking, the ALU makes the necessary provisions to represent the result of its arithmetic operations), but rather by attempting to store the (unrepresentable) result in memory; hence we assume that strictly speaking, the abort is caused by the assignment statement, not by the expression evaluation. In order to capture freedom from overflow, we consider all the assignment statements of the loop body, and for each statement of the form \(x = E\)
where \( x \) is a variable of type \( T \) and \( E \) is an expression that returns a value of type \( T \), we include (in the definition of \( \text{dom}(B) \)) the predicate: \( E \) is a representable value of type \( T \), which we abbreviate as \( \text{repT}(E) \). Because the same expression \( E \) may be evaluated in different states of the program, we denote by \( E(s) \) the value of expression \( E \) at state \( s \). We obtain the following proposition, which is a corollary of Theorem 3.

**Proposition 5** Let \( w \) be a while loop on space \( S \) of the form \( \text{while} \ (t) \ \{ b \} \), and let \( E \) be an arithmetic expression that is assigned to a variable of type \( T \) in the loop body \( b \). Let \( B' \) a superset of \( B \) that satisfies the conditions of anti-reflexivity, transitivity, and concordance. Then

\[
R = \{(s, s') | \forall s'' : (s, s'') \in B'^* \land (s'', s') \in B'^+ \Rightarrow \text{repT}(E(s''))\}.
\]

**Proof.** This proposition is a corollary of Theorem 3, where we let \( \text{dom}(B) \) be defined as \( \text{dom}(B) = \{ s | \text{repT}(E(s)) \} \).

As an illustration of this proposition, we consider the following loop on variables \( x, y \) and \( z \) of type integer:

\[
\text{while} \ (y!=0) \ \{ y = y-1; \ z = z+x; \}
\]

The function of the body of this loop can be written as:

\[
B = \{(s, s') | \text{repInt}(y-1) \land \text{repInt}(z+x) \land x' = x \land y' = y-1 \land z' = z+x \}.
\]

We apply Proposition 5 to this loop, taking \( B' \) as

\[
B' = \{(s, s') | x' = x \land y' = y-1 \land z' = z+x \}.
\]

From this definition of \( B' \), we infer that

\[
B'^+ = \{(s, s') | x' = x \land y > y' \land z + xy = z' + x'y' \},
\]

\[
B'^* = \{(s, s') | x' = x \land y \geq y' \land z + xy = z' + x'y' \}.
\]

The condition of anti-reflexivity is trivially verified, since \( B'^+ \cap I \) is a subset of

\[
\{(s, s') | y > y' \land y = y' \},
\]

which is empty. Also, the condition of concordance is verified, since \( (T \cap B) \cap B'^+ B' \) is a subset of

\[
\{(s, s') | y > y' + 1 \land y' = y - 1 \},
\]

which is also empty. As for the transitivity condition, its proof can established in the same way as we did for Proposition 3. Hence we may apply Proposition 5, yielding the following invariant relation:

\[
R = \{(s, s') | \forall s'' : y \geq y'' > y' \land x = x'' \land x'' = x' \land z + xy = z'' + x''y'' \land z' + x'y' \Rightarrow \text{repInt}(z'' + x'') \land \text{repInt}(y'' - 1)\}.
\]

We further derive the following invariant relations:
• The elementary invariant relation, that captures loop behavior in border cases: \( R_0 = I \cup T(T \cap B) \).
• The invariant relation that records the decrease of \( y \) (to bind the number of iterations): \( R_1 = \{(s, s')| y \geq y'\} \).
• The invariant relation that records the relation between the index variable \( y \), and the arithmetic expression whose overflow we want to model (\( z + x \)): \( R_2 = \{(s, s')| z + xy = z' + x'y'\} \).

When we take the intersection of all these relations and apply Proposition 5, we find the following termination condition:

\[
(y = 0) \lor (y > 0 \land \text{MinInt} \leq z + xy \leq \text{MaxInt}).
\]

In addition to being provably a necessary condition of termination, we believe that this logical formula is also a sufficient condition of termination: In order for this loop to terminate without causing an abort, \( i \) has to be zero, or it has to be positive, then \( z + xy \) (which is the expression that the loop computes into \( z \)) has to be representable (i.e. included between MinInt and MaxInt).

As a second illustrative example, we consider the following loop on integer variables \( x \) and \( y \):

\[
\text{while } (y!=N) \{y=y+1; \ x=x+y;\}
\]

The function of the loop body can be written as:

\[
B = \{(s, s')| repInt(y + 1) \land repInt(x + y + 1) \land y' = y + 1 \land x' = x + y + 1\},
\]

whence the domain of \( B \) can be written as:

\[
\text{dom}(B) = \{s| repInt(y + 1) \land repInt(x + y + 1)\}.
\]

For \( B' \), we choose the following relation:

\[
B' = \{(s, s')| y' = y + 1 \land x' = x + y + 1\}.
\]

From this definition, we infer that:

\[
B'^+ = \{(s, s')| y < y' \land 2x - y(y + 1) = 2x' - y'(y' + 1)\},
\]

\[
B'^* = \{(s, s')| y < y' \land 2x - y(y + 1) = 2x' - y'(y' + 1)\}.
\]

Using the same argument as in the previous example, we can establish that \( B' \) satisfies the conditions of anti-reflexivity, transitivity, and concordance. Hence, by Proposition 5, the following relation is an invariant relation for \( w \):

\[
R = \{(s, s')| \forall s'': y \leq y'' < y' \land 2x - y(y + 1) = 2x'' - y''(y'' + 1) \land 2x'' - y''(y'' + 1) = 2x' - y'(y' + 1) \Rightarrow repInt(y + 1) \land repInt(x + y + 1)\}.
\]

This relation by itself is not adequate; we add to it the following invariant relations:

• The elementary invariant relation, \( R_0 = I \cup T(T \cap B) \).
The invariant relation that records the increase of $y$: $R_1 = \{(s, s')|y \leq y'\}.$

The invariant relation that links program variables to each other: $R_2 = \{(s, s')|2x - y(y+1) = 2x' - y'(y' + 1)\}.$

If we take the intersection of these invariant relations and apply Proposition 5, we find the following necessary of termination, which we believe is also sufficient:

$$(y = N) \lor (y < N \land \text{MinInt} \leq N \leq \text{MaxInt} \land \text{MinInt} \leq x - \frac{y(y+1)}{2} + \frac{N(N+1)}{2} \leq \text{MaxInt}).$$

We believe that this condition is sufficient, in addition to being provably necessary. This condition provides that the loop terminates without causing an abort if and only if $(y = N)$ (in which case the loop terminates instantly) or $(i < N)$, in which case the number of iterations is finite, but then we also have conditions that ensure that the loop causes no arithmetic overflow of (respectively) the two assignment statements of the loop body.

### 5.4 Illegal Pointer Reference

We consider a while loop $w$ on space $S$ and we assume that space $S$ includes a pointer variable $p$. We assume that pointer $p$ refers to a record structure that has several pointer fields that point to the same structure. Whenever a pointer is referenced, we must ensure that it is not nil, to avoid an abort. The following proposition is a corollary of Theorem 3, and applies to loops that are prone to cause an illegal pointer reference.

**Proposition 6** Let $w$ be a while loop on space $S$ of the form $w$: while (t) {b}, and let $p$ be a pointer variable that is referenced in $b$ in a statement of the form $p = *p.f$ for some field $f$. We assume that pointer $p$ points to a record type $P$, which contains one or more fields that point to records of type $P$. If the data structure (graph) so defined does not have loops ($p$ points to itself) nor cycles ($P$ is reachable from $p$) then then the following relation is an invariant relation for $w$:

$$R = \{(s, s')|\forall p'': \text{reach}(p, p'') \land \text{reach}(p'', p') \land p'' \neq p' \Rightarrow p'' \neq \text{nil}\},$$

where $\text{reach}(p, p')$ means that pointer $p'$ can be reached from pointer $p$ by an arbitrary number (possibly zero) of pointer references.

**Proof.** Given that $b$ has a statement of the form $p = *p.f$, where $*p$ designates the record pointed to by $p$ and $*p.f$ designates the pointer addressed by field $f$, we let $B'$ be the relation defined by:

$$B' = \{(s, s')|p' = *p.f\}.$$

The anti-reflexivity and concordance of $B'$ can be established by virtue of the absence of cycles and the absence of loops in the data structure (by hypothesis). The condition of transitivity can be established in the same way as the proof of Proposition 3. Hence we may apply Theorem 3, letting $\text{dom}(B)$ be defined as $\{s|p \neq \text{nil}\}$. To this effect, we compute $B'^+''$ and $B'^*$, which we find to be as follows:

$$B'^+'' = \{(s, s')|\text{reach}(p, p') \land p \neq p'\},$$

$$B'^* = \{(s, s')|\text{reach}(p, p')\}.$$
Combining \( \text{dom}(B) \) with \( B'^+ \) and \( B'^* \) as indicated by Theorem 3, we find: 
\[
R = B'^* (B'^+ \cap B^L).
\]
This is exactly the invariant relation proposed by the proposition. \( \mathbf{qed} \)

As we have seen repeatedly in previous sections, the invariant relation provided by Theorem 3 are typically insufficient to compute a meaningful termination condition, and must be supplemented with other (functional) invariant relations, that capture relevant functional properties of the loop at hand. The same applies for the invariant relation proposed in Proposition 6. To supplement this proposition, we introduce relevant invariant relations that pertain to data structures defined by pointers; to this effect, we introduce some functions. As we recall, we assume that the data structure has no cycle; we let \( \text{Roots} \) be the set of nodes that have no pointer pointing to them, and \( \text{Leaves} \) be the set of nodes that are pointing to no other nodes (all their pointer fields are nil). We introduce a fictitious node that has links to all the roots, which we denote by \( \text{Root} \), and a fictitious node to which all leaves, which we denote by \( \text{Leaf} \).

- Given a node represented by its pointer \( p \), we let \( \text{MaxDepth}(p) \) be the length of the longest path from the Root to \( p \), and \( \text{MinDepth}(p) \) be the length of the shortest path from the Root to \( p \).

- Given a node represented by its pointer \( p \), we let \( \text{maxHeight}(p) \) be the length of a longest path from \( p \) to the Leaf, and we let \( \text{minHeight} \) be the length of a shortest path from \( p \) to the Leaf.

These functions enable us to derive some general invariant relations, which we present in the following Proposition.

**Proposition 7** Let \( w \) be a while loop on space \( S \) of the form \( w: \text{while (} t \text{) \{b\}} \), and let \( p \) be a pointer variable that is referenced in \( b \). We assume that the record that \( p \) points to has several pointer fields, say \( f_1, f_2, .., f_n \). If the function of \( b \) is a subset of \( B' = \{(s, s')| p' = *p.f_i \} \) for some pointer field \( f_i \) of \( p \) then the following relations are invariant relations for \( w \):

\[
R_0 = \{(s,s')| \text{MaxDepth}(p) \leq \text{MaxDepth}(p') \}.
\]
\[
R_1 = \{(s,s')| \text{MinDepth}(p) \leq \text{MinDepth}(p') \}.
\]
\[
R_2 = \{(s,s')| \text{maxHeight}(p) \geq \text{maxHeight}(p') \}.
\]
\[
R_3 = \{(s,s')| \text{minHeight}(p) \geq \text{minHeight}(p') \}.
\]

**Proof.** Reflexivity and transitivity stem readily from the structure of the relations; invariance can be proved readily by considering that the inequalities that characterize each relation are logical conclusions of the formula: \( p' = *p.f \) for any pointer field \( f \). \( \mathbf{qed} \)

In tree-like structures, where there is a single path from the root to every node, functions \( \text{minDepth} \) and \( \text{maxDepth} \) are identical, and are denoted by \( \text{depth} \), affording us smaller invariant relations, as shown below.

**Proposition 8** Let \( w \) be a while loop on space \( S \) of the form \( w: \text{while (} t \text{) \{b\}} \), and let \( p \) be a pointer variable that is referenced in \( b \). We assume that the record that \( p \) points to has several pointer fields, say \( f_1, f_2, .., f_n \), and that the resulting data structure is tree-like. If the function of
b is a subset of B' = \{(s,s')|p' = *p.f\} for some pointer field f, of p then the following relations are invariant relations for w:

\[ R_0 = \{(s,s')|\text{depth}(p) \leq \text{depth}(p')\} \]
\[ R_1 = \{(s,s')|\text{depth}(p) + \text{maxHeight}(p) \geq \text{depth}(p') + \text{maxHeight}(p')\} \]
\[ R_2 = \{(s,s')|\text{depth}(p) + \text{minHeight}(p) \leq \text{depth}(p') + \text{minHeight}(p')\} \]
\[ R_3 = \{(s,s')|\forall h : \text{depth}(p) \leq h < \text{depth}(p') \Rightarrow (*p.f^h \neq \text{nil})\} \]

**Proof.** Relation R₀ is reflexive and transitive; it is a superset of B' (hence a superset of B) because the unique path from the root to p' necessarily goes through p. Relation R₁ is reflexive and transitive. As for being a superset of B, it suffices to prove that it is a superset of B'. Let (s, s') be a pair of B'. Then, by definition, \( \text{depth}(p') = \text{depth}(p) + 1 \). Now, if p' is on the path from p to the farthest leaf, then \( \text{maxHeight}(p) = 1 + \text{maxHeight}(p') \). Whence \( \text{depth}(p) + \text{maxHeight}(p) = \text{depth}(p') + \text{maxHeight}(p') \). If p' is not on the path from p to the farthest leaf, then \( \text{maxdepth}(p) > 1 + \text{maxHeight}(p') \). Whence \( \text{depth}(p) + \text{maxHeight}(p) > \text{depth}(p') + \text{maxHeight}(p') \). The same argument can be used (with some duality) for relation R₂. The proof that relation R₃ is invariant is similar to the proof of Proposition 3.  

\[ \text{qed} \]

A trivial corollary of this Proposition is that if p has a single pointer field, then there is a single path from any node to a leaf, hence \( \text{maxHeight}() \) is the same as \( \text{minHeight}() \); we refer to this function as \( \text{height}() \), and we have the following Proposition.

**Proposition 9** Let w be a while loop on space S of the form w: while (t) {b}, and let p be a pointer variable that is referenced in b. We assume that the record that p points to has a single pointer field (say, f) and that it defines a structure without cycles. If the function \( T \cap B \) is a subset of B' = \{(s,s')|p' = *p.f\} then the following relation is an invariant relation for w:

\[ R = \{(s,s')|\text{depth}(p) + \text{height}(p) = \text{depth}(p') + \text{height}(p')\} \]

If an integer variable is incremented or decremented alongside a pointer reference in a rooted tree structure, then we can link the depth of a node to the integer variable, as shown in the following Proposition.

**Proposition 10** Let w be a while loop on space S of the form w: while (t) {b}, and let p be a pointer variable in S and i be an integer variable in S. If the function \( T \cap B \) is a subset of B' = \{(s,s')|i = i + c \wedge p' = *p.f\} for some non zero constant c, then the following relation is an invariant relation for w:

\[ R = \{(s,s')|i - c \times \text{depth}(p) = i' - c \times \text{depth}(p')\} \]

**Proof.** This relation is reflexive and transitive, as it is the nucleus of a function. That it is a superset of B' can be readily established by considering that if p' = *p.f then \( \text{depth}(p') = \text{depth}(p) + 1 \).  

\[ \text{qed} \]

We consider a number of examples to illustrate the results of this subsection. If we consider the following program on pointer p, where the record of p has a single pointer field next, while (p!=nil) {p=*p.next;}, then we find the termination condition true.
If we consider the following program on integer variable \( p \) and pointer variable \( p \), where the record of \( p \) has a single pointer field \( \text{next} \),

\[
\text{while (i<N) \{p=*p.next; i=i+1;\}},
\]

then we find the following termination condition

\[(i \geq N) \lor (i < N \land \text{depth}(p) \geq N - i).\]

If we consider the following program on integer variable \( p \) and pointer variable \( p \), where the record of \( p \) has two pointer fields \( \text{left} \) and \( \text{right} \),

\[
\text{while (i<N) \{i=i+1; if ((i\%2)==0)\{p=*p.right;} else \{p=*p.left;\}}\},
\]

then we find the following termination condition

\[(i \geq N) \lor (i < N \land N - i \leq \text{maxHeight}(p)).\]

Note that this is a necessary condition of termination, but not a sufficient condition of termination; we conjecture that a sufficient condition of termination would have \( \text{minHeight()} \) rather than \( \text{maxHeight()} \).

6 Condition of Sufficiency

Throughout this paper we have considered several examples of programs for which we have given a necessary condition of termination, and claimed that we thought the condition was sufficient, in addition to being provably necessary. In this brief section, we discuss two questions, namely: why cant we have a provably sufficient condition of termination? How can we claim that our necessary conditions are sufficient? We address these questions in turn, below.

- **Why cant we have a sufficient condition?** It is hardly surprising that arbitrary (arbitrarily large) invariant relations can only generate necessary conditions, since they capture arbitrarily partial information about the loop, hence cannot be used to make claims about a global property of the loop. Yet strictly speaking, we can formulate a sufficient condition of termination, but it is of little use in practice. A sufficient condition of termination would read as follows: Given a while loop of the form \( w = \text{while (t) \{b\}} \), and given the invariant relation \( R = (T \cap B)^* \), then \( RT \subseteq WL \).

As we recall from Proposition 1, \( R = (T \cap B)^* \) is an invariant relation of the loop, and is in fact the smallest invariant relation of the loop. In practice, it is very difficult to compute this reflexive transitive closure for arbitrary \( T \) and \( B \). One of the main interests of invariant relations is in fact that: First they enable us to compute or approximate the reflexive transitive closure of \( (T \cap B) \). Second and perhaps most importantly, they enable us to dispense with the need to compute the reflexive transitive closure of \( (T \cap B) \). In particular, one of the main motivations for using invariant relations is that they enable us, with relatively little scrutiny of the loop, to answer many questions pertaining to the loops, hence requiring that we compute the strongest possible invariant relation to secure a sufficient condition of termination defeats the purpose of using invariant relations.
How can we claim sufficiency? We are currently developing heuristics that enable us to recognize when an invariant relation is small enough to ensure that the formula of Theorem 2 provides a sufficient condition of termination. As far as ensuring that the number of iterations is finite, we can proceed by identifying the variables that intervene in the loop condition, and generating all the invariant relations that involve these variables, and any variable that affects their value (through assignment statements). As for ensuring freedom from aborts, we also want to include any invariant relation that links the variables identified above with the variables that are involved in the abort condition (array indices, denominators of fractions, arithmetic expressions, etc). Another heuristic that we are considering is to define a set of recognizers that specialize in computing a sufficient condition of termination, by focusing on termination-related details; for example, if the loop body includes a clause of the form \( x' = x + a[i] \) for some real variable \( x \), real array \( a \), and index (integer) variable \( i \), then the complete recognizer would generate the invariant relation \( \{(s,s') | x + \Sigma a = x' + \Sigma a'\} \) whereas the termination-related recognizer would merely record that array \( a \) has been accessed at index \( i \). A final heuristic, invoked in [36] for the purpose of minimizing the number of invariant relations generated by our tool, involves generating just enough invariant relations to link all the statements of the loop body into a connected graph.

All the heuristics discussed herein are intended to enable us to claim sufficiency of our termination condition before we generate all the invariant relations of the loop; we envision to organize these heuristics into a cohesive algorithm, as part of our future research plans.

7 Conclusion

7.1 Summary

7.1.1 Conceptual Results

In this paper, we have introduced an approach to computing the termination condition of programs, which can be characterized by the following premises:

- Our definition of termination refers to the property that the number of steps in the program’s execution is finite, and that each individual step can be completed without causing an illegal operation (to which we refer as an abort). Consequently, our definition applies to sequential programs as much as to iterative programs.

- We present a theorem (Theorem 2) that transforms each invariant relation into a necessary condition of termination. Because the theorem makes no reference to what may preclude normal termination, it can be used to model the property that the number of iterations is finite as well as the property that each individual iteration is free of aborts.

- We find that when we apply Theorem 2 with invariant relations that are antisymmetric (in addition to being reflexive and transitive), we generate bounds on the number of iterations, i.e. conditions to the effect that the number of iterations is finite.

- We present a theorem (Theorem 3) that provides a general format for invariant relations that capture the property of abort freedom; when Theorem 2 is applied using invariant relations generated by Theorem 3 combined with invariant relations that capture other relevant
functional information, they produce a necessary condition of termination that encompasses bounds on the number of iterations as well as conditions that ensure that no single iteration causes an abort at run-time.

- We have generated a number of corollaries for Theorem 3, which apply it to special abort conditions, generating appropriate termination conditions for each type of abort. The adequacy of the results that we have obtained from the corollary give us further confidence in the original theorem.

- We argue that while invariant relations enable us to compute provably necessary conditions of termination, we can use them to also attain sufficient conditions of termination, provided we generate a sufficient number of them. Also, we have explored heuristics that enable us to recognize when we have collected enough invariant relations to be able to claim sufficiency.

### 7.1.2 Automated Support

The transformation of source code (C++ for now) into our internal relational notation is a simple compiler transformation, which is currently operational. The step that generates invariant relations from the relational representation of the loop, by matching clauses of the relational representation against recognizers is currently operational; and our current database includes 89 recognizers, covering a number of data structures (scalar data types, structured data types such as arrays, abstract data types such as lists, etc). Whereas this component currently operates by syntactic matching, we are replacing it with a semantic matching algorithm. Semantic matching determines whether a formal pattern matches an actual pattern by instantiating the formal pattern with actual variable names and checking the validity of the theorem that results from the equality of the two patterns. Semantic matching offers two significant advantages over syntactic matching: first it enables us to match patterns across a wide range of variance in form; second, it enables us to achieve much broader scope with fewer recognizers. This transformation is currently under way.

The third step, of transforming invariant relations into necessary conditions of termination, is a trivial step, since it involves submitting a precoded formula, in which a placeholder is replaced by the current invariant relation, to an algebraic system, to have the formula simplified. Our plan calls for completing the semantic matching step, then integrating the three steps within a single tool, with a user interface to manage interactions with the user.

### 7.2 Related Work

#### 7.2.1 Loop Termination

Analysis of termination is a very active research area for which there is a vast bibliography, starting with the pioneering work of Alan Turing [67]. Boyer and Moore [4] propose a technique based on semi-automatic theorem proving where termination arguments have to be user-supplied. The work of Gupta et.al [29] is closer in intention and goals to our work; it uses templates (similar to our recognizers) in order to identify recurrent sets, but for the sole purpose of characterizing infinite loops; also focused on non termination is the work of Velroyen and Ruemmer [68]. In these two cases, the analysis is restricted to linear programs. Linear programs are also the focus of other researchers, such as [5, 10, 20, 65], whereas our work is not subject to this restriction. In [7], Burnim et. al. propose a dynamic approach to detecting infinite loops, based on concolic executions; the technique
is generally incomplete, in the sense that the iterative analysis may lack the resources needed to solve complex constraints. In [22] Falke et. al. critique existing approaches to the analysis of termination of iterative program, on the grounds that treating bitvectors and bitvector arithmetic as integers and integer arithmetic is unsound and incomplete; also, they propose a novel method for modeling the wrap-around behavior of bitvector arithmetic, and analyze loop termination within this model. We agree with the assessment of Falke et. al. and argue that our model already captures some of the aspects that Falke et. al. are interested in, and captures other aspects beyond the scope of their work. In [60], Podelski and Rybalchenko propose a complete method for computing linear ranking functions; their approach is complete in the sense that if the loop can be bound by a linear ranking function, one such a function will be found by their method; whereas the work of Podelski and Rybalchenko is restricted to loops that are bound by a linear function, our work can analyze loops of arbitrary properties, since our recognizers are not restricted to any special form. Lee et. al. [46] use the results of Podelski and Rybalchenko [13, 60] and propose an approach based on algorithmic learning of Boolean formula in order to compute disjunctive, well founded, transition invariants; the technique appears to be particularly effective when dealing with simple programs dealing with linear arithmetic; by contrast, our approach is not limited to arithmetic programs, much less to linear arithmetic. In [14], Cook et. al. give a comprehensive survey of loop termination, in which they discuss transition invariants; whereas invariant relations are approximations of $$(T \cap B^*)$$, transition invariants are in fact approximations of $$(T \cap B)^+$$; this slight difference of form has a significant impact on the properties and uses of these distinct concepts. In [9], Chawdhary et. al. use abstract interpretation to synthesize ranking functions; their technique is subsequently improved by Tsitovitch et. al. [66], where loop summaries allow them to increase the scalability of the technique; like our work, the work of Chawdhary et. al. and the work of Tsitovitch et. al. rely on pattern matching, but unlike our work, it is restricted to linear constraints. In [11], Cook et. al. propose to underapproximate weakest liberal preconditions in order to synthesize simpler predicates that still enable them to prove termination in cases where other tools would return a spurious warning of possible non-termination. In [68], Velroyen and Ruemmer propose to synthesize invariants from a set of prerecorded invariant templates, and deploy a theorem prover to prove that the final states characterized by the invariants is unreachable, hence disproving termination; because it provides a necessary condition of termination, our work can be used to disprove termination: whenever the necessary condition is violated, the loop does not terminate. Abstract interpretation [15–17] is a broad scoped technique that aims to infer properties of programs by successive approximations of their execution traces; as such, it bears some resemblance to our invariant relations-based approach (which infer properties of while loops by approximations of the transitive closure $$(T \cap B)^*$$). Also, abstract interpretation has ben used to, among others, analyze the properties of abort freedom of arbitrary programs [37]. Finally, the work on abstract interpretation has given rise to a widely used automated tool that analyzes programs and issues reports pertaining to their correctness, termination, abort-freedom, etc [3,18]. In order to compare our work to abstract interpretation, we have run Astree on all the sample programs that we presented in this paper, and report the following observations:

- Whereas our goal is to analyze a loop in isolation by symbolically characterizing its input/output function, Astree can only analyze concrete code that is readily executable. Hence, whenever we wanted to analyze one of the loops in our paper, we had to initialize its variables first; for the sake of experimentation, we have generated initial states that do not satisfy the condition of termination found by our methods.
Whereas our goal is to compute the condition of termination (and abort-freedom) of while loops, Astree can only alert us to the fact that, for the given initial states, the loop may raise an abort condition.

Whereas our approach models the behavior of while loops by approximating their function, Astree models loop behavior by unfurling loops a user-specified number of times. Paradoxically, we find that often Astree identifies possible abort conditions for small numbers of iterations, but fails to raise an alert for large numbers of iterations, for the same loop and the same initial state.

Our understanding is that whereas in our approach, the function of the loop is approximated by a superset, in Astree, the function of the loop body is approximated by a superset, but by unfurling the loop a finite number of times Astree approximates the function of the loop by a subset.

In [1], Ancourt et. al. analyze loops by some form of abstract interpretation, but they dispense with the fixpoint semantics of loops by attempting to approximate the transitive closure of the loop body abstraction. While the calculation of transitive closures is complex in general, the authors attempt it using affine approximations of the loop body transformations, which they define in terms of affine equalities and inequalities of state variables. Using techniques of discrete differentiation and integration, they derive an algorithm that computes affine invariant assertions from this analysis, and use the generated assertions to monitor abort-freedom conditions on the state of the program. They illustrate their algorithm by running it on many published sample loops.

Overall, it is fair to say, perhaps, that all the work on ensuring termination by means of ranking functions and well founded orderings is an attempt to approximate (i.e. find a superset of) the transitive closure of the loop body, i.e. \((T \cap B)^+\). By contrast, our work attempts to compute the domain of the function of the loop, hence takes a broader interpretation of the concept of termination; to do so, we approximate the reflexive transitive closure of the loop body, i.e. \((T \cap B)^*\).

7.2.2 Pointer Semantics

Heap data structures manipulate potentially unbounded data structures, which do not lend themselves to simple modeling; as such, they represent one of the biggest challenges to scalable and precise software verification. In order to model the property that a loop causes no illegal pointer reference, we have to capture some aspects of pointer semantics; in our work, we use invariant relations to represent unbounded pointer references, and to reason about them. In this section, we review some of the alternative approaches to pointer semantics, and compare them to ours; we have been able to classify it into four broad categories, which we review in turn below.

Shape Analysis. These approaches proceed by identifying some structure into the pattern of pointers between nodes. In [62] Sagiv et. al. use three-valued logic as a foundation for a parameterized framework for carrying out shape analysis; the framework is instantiated by supplying predicates that capture different relationships between nodes, and by supplying the functions that specify how the predicates are updated by particular assignments. In [27], Bhargav et. al. propose a new shape analysis algorithm, which is presented as an inference system for computing Hoare triplets summarizing heap manipulation programs. These inference rules are used as a basis for a bottom-up shape analysis of data structures.
Alias Analysis. This approach focuses on determining whether two pointers refer to the same heap cell [56]. In [30], Hackett and Aiken use a combination of predicate abstraction, bounded model checking, and procedure summarization to compute a precise path-sensitive and context-sensitive pointer analysis. Alias analysis is only useful for reasoning about explicitly named heap cells, and cannot model general unbounded data structures.

Separation Logic. This approach makes it possible to reason about heap manipulation programs [61] by extending Hoare logic [31] with two operators, namely separation conjunction and separation implication; these operators are used to formulate assertions over disjoint parts of the heap. In [58], O’hearn et. al. define a logic for reasoning about programs that alter data structures; to this effect they define a low-level storage model based on a heap with associated access operations, along with axiomatizations for these operations. The resulting model supports local reasoning, whereby only those cells that a program accesses are referenced in specifications and proofs.

Reachability Predicates. This approach defines and uses predicates that characterize reachable nodes in an arbitrary data structure [57]. Indexed predicate abstraction [42] and Boolean heaps [59] generalize the predicate abstraction domain so that it enables the inference of universally quantified invariants. In [28], Gulwani et. al. show how to combine different abstract domains to obtain universally quantified domains that capture properties of linked lists. Craig interpolation has also been used to find universally quantified invariants for linked lists [48]. In [49], Mehta and Nipkow model heaps as mappings from addresses to values, and pointer structures are mapped to higher level data types for the verification of inductively defined data types like lists and trees. In [23], Filliatre and Marche introduce a method for proving that a program satisfies its specification and is free of null pointer dereferencing and out-of-bounds array access. Their approach is based on Burstall’s model for structures extended to arrays and pointers. Similar tools have been developed for C-like languages, including Astree [3], Caveat [64], and SDV [12], but they are bounded to specific provers. In [50, 51], Meyer presents a comprehensive theory for modeling pointer-rich object structures and proving their properties; the model proposed by Meyer comes in two versions, a coarse-grained version that supports the analysis of the overall properties of the object structures, and a fine-grained version, that analyzes object structures at the level of individual fields. Meyer’s approach is represented in Eiffel syntax, and uses simple discrete mathematics.

Our interest in pointer semantics is much more recent than all these authors, and is driven by our interest in capturing conditions of abort avoidance as they pertain to illegal pointer references. Wheras we had thought initially that we could produce invariant relations that represent the scope equation of pointer references in loops for arbitrary data structures, we have now resolved to generate invariant relations for well known data structures instead, for several reasons: First, generating invariant relations for the general case is very difficult; second, many authors whose work we have reviewed above appear to focus on well-known data structures rather than to arbitrary pointer-based structures; third, existing algorithms of shape analysis give us confidence that we can proceed by first analyzing the shape of our data, then deploying specialized invariant relations accoring to the shape that has been identified.

7.3 Assessment

To the best of our knowledge, our work is the only approach to computing termination conditions that takes a purely semantic approach to defining the condition of termination. We say that a program terminates for an initial state $s$ if and only if the program can produce a final state $s'$ as an image of $s$ by the program function. Whether the program fails to produce a final state because
it fails to terminate or because it fails to apply an intermediate function in its finite execution sequence does not matter to us, as it is a syntactic distinction, not a semantic distinction. In keeping with this premise, our definition of termination applies to iterative programs as much as it applies to non-iterative programs; also, as far as while loops are concerned, our approach provides a way to map any given invariant relation of the loop onto a necessary condition of termination. We can generate many invariant relations for the loop, each capturing a specific aspect of termination, and obtain a termination condition that ensures freedom from all causes of non-termination; to the best of our knowledge, our approach is unique in this feature.

7.4 Prospects

Our tool for analyzing loops proceeds in three steps: First, it maps source code into a relational representation; second, it uses the relational representation to generate invariant relations; third it analyzes the invariant relations to compute necessary termination conditions. We envision to evolve this tool in several ways, including:

- Migrating the current version of the invariant relations generator from syntactic matching (which is how it works now) to semantic matching. Whereas syntactic matching proceeds by matching the recognizer pattern and the actual relational representation token by token, semantic matching (performing by an API call to Mathematica) checks for equality of the corresponding expressions, hence can accommodate a wide difference of form between the recognizer and the relation.

- Creating a recognizer database that is specifically geared to computing termination conditions; this database will include antisymmetric invariant relations (that seem to capture the property that the number of iterations is finite) as well as relations of the form that we have presented in Theorem 3.

- Deploy an algorithm that uses the heuristics discussed in section 6 to direct the invariant relation generator to invariant relations that ensure a sufficient condition of termination at the lowest possible cost (with the smallest number of invariant relations).

- Consolidate the third step of the analysis, which Mathematica does not automate entirely; we are considering supporting this step with the help of an automated theorem prover.

- Integrating all these components into a cohesive tool, which we can run online or make available in executable form.

In terms of theoretical research, we envision to seek simple conditions on $B'$ that ensure that the invariant relation proposed by Theorem 3 is transitive, as the transivity condition of this theorem is too complex. This matter is under investigation.

References


